Women's Health

Advanced solutions in OB/GYN

Women's Health CLEARLY DEFINED

We are proud of the reputation we’ve built over the last decade as an industry leader in OB/GYN Imaging. Known for our excellent image quality, superior system reliability and intuitive use of cutting edge technology, we remain the ideal choice for exceptional diagnostic ultrasound imaging in the field of Women's Healthcare. Our focused dedication to diagnostic ultrasound imaging allows us to offer a wide range of products to meet the needs of every Women’s Healthcare professional. From our super premium systems, to our elegantly designed office-based systems, we have a solution for almost every practice size and diagnostic requirement.

Convex

C251
C251
C252
C252
C35
C35
C253
C253
EUP-C715
EUP-C715
UST-9102U-3.5
UST-9102U-3.5
UST-9115-5
UST-9115-5
UST-9123
UST-9123
UST-9130
UST-9130
UST-9133
UST-9133
UST-9127
UST-9127
UST-9147
UST-9147

Linear

L34
L34
L44
L44
L55
L55
L64
L64
EUP-L53L
EUP-L53L
EUP-L74M
EUP-L74M
UST-568
UST-568
UST-5712
UST-5712
UST-567
UST-567

Endocavity

C41B
C41B
C41V1
C41V1
UST-9118
UST-9118
UST-9124
UST-9124
UST-984-5
UST-984-5

3D/4D

VC34
VC34
VL54
VL54
VC41V
VC41V
VC35
VC35
ASU-1010
ASU-1010
ASU-1012
ASU-1012
ASU-1014
ASU-1014

4G CMUT

SML44
SML44

Biopsy/Intraoperative

C22K
C22K
C22P
C22P
C25P
C25P
C42K
C42K
EUP-B512
EUP-B512
EUP-B715
EUP-B715
UST-9135P
UST-9135P
UST-9120
UST-9120

4D
4D imaging is supported on all platforms by dedicated lightweight, ergonomic transducers to cover the full gestational range. Features that increase the diagnostic value of this modality include Real-time high definition 3D, advanced modes such as MPR / MULTISCAN, and easy storage and retrieval of 3D volume data.
Real-time Tissue Elastography (RTE)
In breast applications, Real-time Tissue Elastography has been shown to improve the accuracy in differentiating between benign and malignant tumours, especially for tumours less than 1 cm, and to improve the specificity compared to US BIRADS classification for benign lesions. As a result, elastography can reduce the biopsy rate in atypical cysts, and may suggest appropriate workup for cancers with an atypical presentation. Preliminary data has shown that the normal cervix is “softer” on elastography in comparison with patients with cancer of the cervix.
Radial Ductal Echography
The role of ultrasound in breast investigation is limited by different factors: its analysis and interpretation present several difficulties, the results are often not easily reproduced, and the quality is highly dependent on the skill of the operator. Moreover, in conventional breast ultrasound, transverse and longitudinal scans are performed perpendicularly to the ductal course.
This mode of scanning cannot match the radial arrangement of the breast anatomy. Cancers are detected only when they have sufficient volume, show abnormal contrast and are perceptible whatever the orientation of the sweep.
An anatomically led method of investigation based on the identification of the internal mammary structures, Ductal Echography, was introduced in 1987 by Dr Teboul. This technique is based on radial scanning with scans performed along the ductal axis. With this technique, the observer actively investigates the epithelial structures by systematically following the ductal system in each mammary lobe. Ductal Echography allows the practitioner to visualize, delineate and hence to differentiate the lobe, Cooper’s ligaments, the fasciae (superficialis and pectoralis), the fat tissue and the chest wall.
This technique offers huge advantages:

  • Understanding of the anatomy
  • Analysis of any changes in the lobes or ducts
  • Detection of pre-tumoural or suspicious lesions at a very early stage
  • Good reproducibility
  • Accurate localisation of the lesion

To perform a radial scanning technique around the nipple, a long linear, high frequency transducer, such as the L53L is the best choice. In addition, a fixed waterbag is available providing:

  • Perfect contact between the skin and the transducer as the water-bag conforms to the shape of the breast.
  • Reduction of artefacts from the skin and shadowing behind the Cooper’s ligaments.
  • Better visualization of the ducts within the nipple and good visualization behind the areolar region
  • Improved contrast resolution
Fetal heart with STIC
Fetal heart with STIC
Uterus with T/V probe
Uterus with T/V probe
Fetal Face with 4Dshading
Fetal Face with 4Dshading
Aortic Arch with eFLOW
Aortic Arch with eFLOW
Cervix tumour seen in RVS (Real-time Virtual Sonography)
Cervix tumour seen in RVS (Real-time Virtual Sonography)
1st trimester scanning with high frequency linear probe
1st trimester scanning with high frequency linear probe
  1. Ami O., Lamazou F., Mabille M., et al. Real-time transvaginal elastosonography of uterine fibroids. Ultrasound Obstet Gynecol 2009; 34: 486–488
  2. Cho N., Moon W.K., Park J.S., et al. Nonpalpable breast masses: evaluation by US elastography. Korean J Radiol, March 1, 2008; 9(2): 111-8.
  3. Cho N., ., Moon W.K., Park J.S. Real-time US elastography in the differentiation of suspicious microcalcifications on mammography. Eur Radiol. 2009 Jul;19(7):1621-8.
  4. Cho N., Moon W.K., Kim H.Y., et al. Sonoelastographic strain index for differentiation of benign and malignant nonpalpable breast masses. . J Ultrasound Med 2010; 29:1–7
  5. Chung SY, Moon WK, Choi JW, et al. Differentiation of benign from malignant nonpalpable breast masses: a comparison of computer-assisted quantification and visual assessment of lesion stiffness with the use of sonographic elastography. Acta Radiol. 2010 Feb;51(1):9-14.
  6. Farrokh A,Wojcinski S, Degenhardt F. Diagnostic value of strain ratio measurement in the differentiation of malignant and benign breast lesions. Ultraschall Med. 2010 Apr 27.
  7. Havre R.F.,Elde E., Gilja O.H., et al. Freehand real-time elastography: impact of scanning parameters on image quality and in vitro intra- and interobserver validations. Ultrasound Med Biol. 2008 Oct;34(10):1638-50.
  8. Itoh A., Ueno E., Tohno E., et al. Breast disease: clinical application of US elastography for diagnosis. Radiology 2006;239:341-350
  9. Moon W.K., Huang C-S., Shen W-C., et al. Analysis of elastographic and B-mode features at sonoelastography for breast tumor classification. Ultrasound Med Biol, 2009 Nov;35(11):1794-802
  10. Raza S., Odulate A., Ong E., et al. Using real-time tissue elastography for breast lesion evaluation. Our initial experience. J Ultrasound Med 2010; 29:551–563
  11. Scaperrotta G., Ferranti C., Costa C., et al. Role of sonoelastography in non-palpable breast lesions. Eur Radiol. 2008:18 (11); 2381 - 9
  12. Tan S.M., Teh H.S., Kent Mancer J.F., et al. Improving B mode ultrasound evaluation of breast lesions with real-time ultrasound elastography- a clinical approach.The Breast; 17 (2008):252 – 257
  13. Thomas A., Fischer T., Frey H., et al. Real-time elastography - an advanced method of ultrasound: first results in 108 patients with breast lesions. Ultrasound Obstet Gynecol 2006, Sep;28 (3): 335-340
  14. Thomas A.Picture of the month: Imaging of the cervix using sonoelastography. Ultrasound Obstet Gynecol 2006, Sep;28 (3): 356-357
  15. Thomas A., Kümmel S., Fritzsche F., et al. Real-time sonoelastography performed in addition to B-mode ultrasound and mammography: improved differentiation of breast lesions? Acad Radiol. 2006 Dec;13(12):1496-504
  16. Thomas A., Kümmel S., Gemeinhardt O., et al. Real-time sonoelastography of the cervix: tissue elasticity of the normal and abnormal cervix. Acad Radiol 2007; 14:193–200
  17. Thomas A, Degenhardt F, Farrokh A, et al. Significant differentiation of focal breast lesions: calculation of strain ratio in breast sonoelastography. Acad Radiol. 2010 May;17(5):558-63. Epub 2010 Feb 20.
  18. Wojcinski S, Farrokh A, Weber S, et al. Multicenter study of ultrasound real-time tissue elastography in 779 cases for the assessment of breast lesions: improved diagnostic performance by combining the BI-RADS®-US classification system with sonoelastography. Ultraschall Med. 2010 Apr 20.
  19. Yamaguchi S., Kamei Y., Kozuma S., et al. Tissue elastography imaging of the uterine cervix during pregnancy. JMed Ultrasonics (2007) 34:209–210 Ultrasound image of the month
  20. Zhi H., Ou B., Luo B., et al. Comparison of ultrasound elastography, mammography, and sonography in the diagnosis of solid breast lesions. J Ultrasound Med 2007; 26: 807–815
  21. Zhi H., Xiaa XY., Yang H-Y., et al. Semi-quantitating stiffness of breast solid lesions in ultrasonic elastography. Acad Radlol 2008; 15:1347-1353
  22. Recommended reading:
    M. Teboul, Practical ductal echography, guide to intelligent and intelligible ultrasonic imaging of the breast, editorial Medgen, 2004, pp. 15-98